Discrete multivortex solitons

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete multivortex solitons.

We introduce discrete multivortex solitons in a ring of nonlinear oscillators coupled to a central site. Regular clusters of discrete vortices appear as a result of mode collisions, and we show that their stability is determined by global symmetries rather than the stability of constituent vortices. Stable multivortex solitons support complex vortex dynamics including charge flipping and spiral...

متن کامل

Multivortex solitons in triangular photonic lattices.

We introduce a novel class of stable lattice solitons with a complex phase structure composed of many single-charge discrete vortices in a triangular photonic lattice. We demonstrate that such nonlinear self-trapped states are linked to the resonant Bloch modes, which bear a honeycomb pattern of phase dislocations.

متن کامل

Observation of multivortex solitons in photonic lattices.

We report on the first observation of topologically stable spatially localized multivortex solitons generated in optically induced hexagonal photonic lattices. We demonstrate that topological stabilization of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional Bloch waves and confirm our experimental results by numerical simulations of the beam pro...

متن کامل

Spiraling multivortex solitons in nonlocal nonlinear media.

We demonstrate the existence of a broad class of higher-order rotating spatial solitons in nonlocal nonlinear media. We employ the generalized Hermite-Laguerre-Gaussian ansatz for constructing multivortex soliton solutions and study numerically their dynamics and stability. We discuss in detail the tripole soliton carrying two spiraling phase dislocations, or self-trapped optical vortices.

متن کامل

Negative Discrete Spectrum of Perturbed Multivortex Aharonov-bohm Hamiltonians

The diamagnetic inequality is established for the Schrödinger operator H 0 in L (R), d = 2, 3, describing a particle moving in a magnetic field generated by finitely or infinitely many Aharonov-Bohm solenoids located at the points of a discrete set in R, e.g., a lattice. This fact is used to prove the Lieb-Thirring inequality as well as CLR-type eigenvalue estimates for the perturbed Schrödinge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optics Letters

سال: 2011

ISSN: 0146-9592,1539-4794

DOI: 10.1364/ol.36.004806